Pressure Independent Control Valves and Actuators Series

Pressure Independent Control Valves

A PICV replaces a traditional control valve and water pressure balancing set. It automatically limits the water flow rate,

irrespective of pressure and allows the flow to be modulated to match the load. Once the maximum flow setting is pre-set using

the graduated scale, the flow will be modulated by means of the control valve and actuator independent of the system pressure. This results in stable flow and energy efficiency, regardless of what is happening elsewhere in the system.

PIC Valves are particularly well suited to use with inverter driven pumps and variable load circuits.

Dynamic curve

n(eq) = 3.9

the actuator.

ADJUSTMENT KNOB The maximum flow setting can be set without removing

FULL STROKE

Separate pressure control and flow chambers allow for full stroke accuracy at any reduced flow setting.

CARTRIDGE The single piece cartridge gives easier maintenance and flushing.

VP1000 Valves Ball Model

ACTUATOR ASSEMBLY Assemblies with 8Nm Non Spring **Return on Spring Return Rotary** Actuators.

VPA Flanged Axial Model

The S-shape design of the valve body flow path minimises internal resistance and turbulence.

Pressure measuring connector can provide convenience for customers to test flow at site.

MANUAL SHUT OFF For easy maintenance ...

integral isolation feature.

FLUSHING MODE

Control valve rotated by 180° profiled opening outside flow path. The valve has now full port passage, allowing twice

maximum flow, for proper flushing and cleaning.

ACTUATORS OFFER:

- High Accuracy of Flow Control
- Four different input/output
- Display for function information on 3000N model

Actuators

Valves

VP1000 Valves - Axial Model

Flow Rate Range	Codes	Body Size	Connection Size	PN	∆p Range (kPa)
0.045 ÷ 0.15 m ³ /h		DN1E	De 1/4" Equalo	25	20 ÷ 400
0.013 ÷ 0.042 l/s	VPIOUAAA	DIVID	ICC /2 Tellidle	20	20 ÷ 400
0.060 ÷ 0.6 m³/h		DNIE	De 1/4 Female	25	25 ÷ 400
0.017 ÷ 0.167 l/s	VPIUUAAE	DINIS	RC 72 Feilidie		
0.078 ÷ 0.78 m ³ /h		DN15 Rc ½" Female	ЭE	2E · 400	
0.022 ÷ 0.217 l/s	VPIOUAAG		RC /2 Tellidie	20	25 ÷ 400
0.1 ÷ 1 m³/h		DN20 Rc ¾" F	De 3/ " Female	25	30 ÷ 400
0.028 ÷ 0.278 l/s	VPIUUBAJ		RC 7/4 Female	25	
0.45 ÷ 1.5 m³/h		DN20	Rc ¾″ Female	25	35 ÷ 400
0.125 ÷ 0.417 l/s	VPIUIBAN				

Flow Rate Range	Codes	Body Size	Connection Size	PN	∆p Range (kPa)
0.22 ÷ 2.2 m ³ /h		DNDE	1" Union Fomalo	2E	2E · 400
0.061 ÷ 0.611 l/s	VPIOUCAU	DINZO	1 UNION Female	25	25 ÷ 400
0.27 ÷ 2.7 m ³ /h		DNDE	1" Union Fomalo	2E	20 . 400
0.075 ÷ 0.75 l/s	VPIOUCAW	DIN25	1 Union Female	20	50 ÷ 400
0.27 ÷ 2.7 m ³ /h		DNDD	11/ " Union Formala	25	25 . 400
0.075 ÷ 0.75 l/s	VPIOUDAW	DIN32	174 UNION Female	25	55 ÷ 400
0.3 ÷ 3 m³/h		DNI22	11/." Union Fomalo	25	2E : 400
0.083 ÷ 0.833 l/s	VPIODAT	DN3Z	174 UNION Female	25	55 - 400

Flow Rate Range	Codes	Body Size	Connection Size	PN	∆p Range (kPa)
1.8 ÷ 6 m³/h		DN40	11/." Union Fomalo	16	20 ÷ 600
0.5 ÷ 1.667 l/s	VPIUIDBD	DIN40	174 UNION TEINALE	10	30 + 000
1.8 ÷ 6 m³/h	VD1015DD	DN40 11/ "	11/ " Union Fomalo	16	20 . 600
0.5 ÷ 1.667 l/s	VPIUIEDD	DIN40	172 UNION Pennale	10	50 ÷ 600
0.9 ÷ 9 m³/h	VD1015DC	DN40 11/ // Union Formale	16	35 ÷ 600	
0.25 ÷ 2.5 l/s	VPIUIEDC	DN40 172 UNION FEMA			10
3.3 ÷ 11 m³/h		DN40	2" Union Fomalo	16	40 : 600
0.917 ÷ 3.056 l/s	VPIOIEDD	DIN40	2 Officit Female	10	40 . 000
1.2 ÷ 12 m³/h		DN50 2" Union Female	16	30 ÷ 400	
0.333 ÷ 3.333 l/s	VPIOIPD				
1.8 ÷ 18 m³/h		DN50 2" Union Fem	2" Union Fomalo	16	2E : 400
0.5 ÷ 5 l/s	VPIUIPP		2 Union remaie	10	55 ÷ 400
1.8 ÷ 18 m³/h	VD101CDE		De 21// Mala	16	2E : 400
0.5 ÷ 5 l/s	VPIUIGBP	DINSU	rc 272 Maie	10	55 - 400

Flow Rate Range	Codes	Body Size	Connection Size	PN	∆p Range (kPa)
3.9 ÷ 13 m³/h	VPA050-C	DN50	Elango ISO 7005-2	16	35 ÷ 400
1.092 ÷ 3.64 l/s	VFA050-C	DNJU	1 lange 150 7005 2	10	55 - 400
6.3 ÷ 21 m³/h	VDAOGE C	DN65	Flange ISO 7005-2	16	35 ÷ 400
1.74 ÷ 5.8 l/s	VPA005-C				
8.4 ÷ 28 m³/h	VD4000 C	DN80 Flange ISO 7005-2	16	2E · 400	
2.34 ÷ 7.8 l/s	VPA000-C		Fidlige ISO 7005-2	10	55 ÷ 400
15 ÷ 50 m³/h	VID4400_C	DN100 Flange ISO 7005-2	Flange ISO 7005 2	16	35 ÷ 400
4.17 ÷ 13.9 l/s	VPA100-C		Fidlige ISO 7005-2		
27 ÷ 90 m ³ /h	VD4125_C	DN125 Flange ISO 7005-2	Flange ISO 7005 D	16	35 ÷ 400
7.5 ÷ 23 l/s	VPA125-C		Fidlige ISO 7005-2		
43.5 ÷ 145 m ³ /h	VDA150_C	DN150	Flange ISO 7005-2	16	35 ÷ 400
12.09 ÷ 40.3 l/s	VPA150-C				

Actuators

Codes	Power Supply	Control Type	Auxiliary Switches			
VA9208-GGA-1	24 VAC/VDC	Droportional				
VA9208-GGC-1		Froportional	• `			
VA9208-AGA-1				Floating &		Contraction -
VA9208-AGC-1		ON/OFF	•			
VA9208-BGA-1						
VA9208-BGC-1			•			
VA9208-BDA-1	230 VAC	UN/OFF		VA9208		
VA9208-BDC-1			•	Spring Return Valve Actuators		

Pumps Cost reduced

PICV guarantee the required flow to each terminal. Consequently the total flow is less and the system requires a lower pump head.

Easy Valve selection

K_{VS} calculations are no longer necessary. The valve is simply selected according to the flow demand of the load.

More comfort and additional saving

The morning start-up can easily cause system imbalance as loads boost to meet demand. Loads at circuit ends can become starved of flow and take longer to warm or cool. Eliminating this imbalance improves comfort and energy consumption.

Higher Efficiency on equipment

PICVs guarantee the required flow to each load without wasting pump power with pressure reducing sets. The lower pump head pressure and flow rates needed save energy and the cost of oversized pumps.

Simplified Balancing

PICVs makes circuits independent; decoupling them from the system. The balancing process is much simplified - just a check of the flow.

Flexibility

Plants can be commissioned zone-by-zone without the need for re-commissioning when additional plant or zones are added.

An immediate 50% labour cost reduction and less pipe space needed.

Johnson Controls delivers products, services and solutions that increase energy efficiency and lower operating costs in buildings for more than one million customers. Operating from 500 branch offices in more than 150 countries, we are a leading provider of equipment, controls and services for heating, ventilating, air-conditioning, refrigeration and security systems. We have been involved in more than 500 renewable energy projects including solar, wind and geothermal technologies. Our solutions have reduced carbon dioxide emissions by 16 million metric tons and generated savings of \$7.5 billion since 2000. Many of the world's largest companies rely on us to manage 1.5 billion square feet of their commercial real estate.

